2 research outputs found

    An improved double-toroidal spectrometer for gas phase (e,2e) studies

    Get PDF
    A new spectrometer is described for measuring the momentum distributions of scattered electrons arising from electron-atom and electron-molecule ionization experiments. It incorporates and builds on elements from a number of previous designs, namely, a source of polarized electrons and two high-efficiency electrostatic electron energy analyzers. The analyzers each comprise a seven-element retarding-electrostatic lens system, four toroidal-sector electrodes, and a fast position-and-time-sensitive two-dimensional delay-line detector. Results are presented for the electron-impact-induced ionization of helium and the elastic scattering of electrons from argon and helium which demonstrate that high levels of momentum resolution and data-collection efficiency are achieved. Problematic aspects regarding variations in collection efficiency over the accepted momentum phase space are addressed and a methodology for their correction presented. Principles behind the present design and previous designs for electrostatic analyzers based around electrodes of toroidal-sector geometry are discussed and a framework is provided for optimizing future devices.The assistance of the AustralianGerman Research Cooperation Scheme and the Australian Research Council through Grant No. DP0452553 and a 1998 ARC RIEF grant is gratefully acknowledged

    Angle-resolving time-of-flight electron spectrometer for near-threshold precision measurements of differential cross sections of electron-impact excitation of atoms and molecules

    No full text
    This article presents a new type of low-energy crossed-beam electron spectrometer for measuring angular differential cross sections of electron-impact excitation of atomic and molecular targets. Designed for investigations at energies close to excitation thresholds, the spectrometer combines a pulsed electron beam with the time-of-flight technique to distinguish between scattering channels. A large-area, position-sensitive detector is used to offset the low average scattering rate resulting from the pulsing duty cycle, without sacrificing angular resolution. A total energy resolution better than 150 meV (full width at half maximum) at scattered energies of 0.5-3 eV is achieved by monochromating the electron beam prior to pulsing it. The results of a precision measurement of the differential cross section for electron-impact excitation of helium, at an energy of 22 eV, are used to assess the sensitivity and resolution of the spectrometer.M.L. would also like to thank both the Australian Research Council and the Deutsche Forschungsgemeinschaft, who have supported the project under Grant Nos. LX0346836 and LA 1473, respectively
    corecore